首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6177篇
  免费   555篇
  国内免费   12篇
  2023年   58篇
  2022年   51篇
  2021年   210篇
  2020年   99篇
  2019年   161篇
  2018年   178篇
  2017年   175篇
  2016年   224篇
  2015年   326篇
  2014年   322篇
  2013年   415篇
  2012年   503篇
  2011年   459篇
  2010年   291篇
  2009年   224篇
  2008年   321篇
  2007年   325篇
  2006年   277篇
  2005年   272篇
  2004年   205篇
  2003年   184篇
  2002年   221篇
  2001年   147篇
  2000年   190篇
  1999年   129篇
  1998年   47篇
  1997年   24篇
  1996年   29篇
  1995年   47篇
  1994年   35篇
  1993年   32篇
  1992年   68篇
  1991年   58篇
  1990年   58篇
  1989年   58篇
  1988年   44篇
  1987年   33篇
  1986年   41篇
  1985年   44篇
  1984年   25篇
  1983年   21篇
  1982年   12篇
  1981年   16篇
  1980年   9篇
  1979年   15篇
  1978年   14篇
  1977年   13篇
  1976年   7篇
  1973年   5篇
  1972年   6篇
排序方式: 共有6744条查询结果,搜索用时 15 毫秒
91.
Deletions in the Drosophila minichromosome Dp1187 were used to investigate the genetic interactions of trans-acting genes with the centromere. Mutations in several genes known to have a role in chromosome inheritance were shown to have dominant effects on the stability of minichromosomes with partially defective centromeres. Heterozygous mutations in the ncd and klp3A kinesin-like protein genes strongly reduced the transmission of minichromosomes missing portions of the genetically defined centromere, but had little effect on the transmission of minichromosomes with intact centromeres. Using this approach, ncd and klp3A were shown to require only the centromeric region of the chromosome for their roles in chromosome segregation. Increased gene dosage also affected minichromosome transmission and was used to demonstrate that the nod kinesin-like protein gene interacts genetically with the centromere, in addition to interacting with extracentromeric regions as demonstrated previously. The results presented in this study strongly suggest that dominant genetic interactions between mutations and centromere-defective minichromosomes could be used effectively to identify novel genes necessary for centromere function.  相似文献   
92.
Protein interactions during coronavirus assembly.   总被引:14,自引:9,他引:5       下载免费PDF全文
Coronaviruses assemble and obtain their envelope at membranes of the intermediate compartment between the endoplasmic reticulum and Golgi complex. Like other enveloped viruses, coronavirus assembly is presumably dependent on protein localization and protein-protein as well as protein-RNA interactions. We have used the bovine coronavirus (BCV) as a model to study interactions between the viral proteins in virus-infected cells that are important for coronavirus assembly. BCV is a prototype for the coronaviruses that express an additional major structural protein, the hemagglutinin esterase (HE), in addition to the spike (S) glycoprotein, membrane (M) glycoprotein, and nucleocapsid (N) protein. Complexes consisting of the M, S, and HE proteins were detected in virus-infected cells by coimmunoprecipitations. Kinetic analyses demonstrated that S protein and HE each quickly formed a complex with M protein after synthesis, whereas heterocomplexes consisting of all three proteins formed more slowly. The kinetics of HE biosynthesis revealed that the half-life of oligomerization was approximately 30 min, which correlated with the appearance of complexes consisting of M, HE, and S proteins, suggesting that oligomerization and/or conformational changes may be important for the S-M-HE protein complexes to form. Only HE dimers were found associated with the heterocomplexes consisting of all three proteins. S-M-HE protein complexes were detected prior to processing of the oligosaccharide chains on HE, indicating that these protein complexes formed in a premedial Golgi compartment before trimming of sugar chains. Transient coexpressions and double-labeling immunofluorescence demonstrated that HE and S proteins colocalized with M protein. This was further supported by coimmunoprecipitation of specific HE-M and S-M protein complexes from transfected cells, indicating that these proteins can form complexes in the absence of other viral proteins.  相似文献   
93.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   
94.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   
95.
We have recently obtained evidence that the locus corresponding to three groups of partial tracheobronchial cDNAs (A=Jer47, B=Jer57, C=Jer58) which mapped to chromosome 11p15 and was given the symbol MUC5 corresponds to two distinct genes which we have provisionally called MUC5B and MUC5AC. Here we describe the detection, using the Jer58 probe, which contains a 24-bp tandem repeat, of polymorphism in the MUC5AC gene with seven different restriction enzymes.  相似文献   
96.
97.
Summary The effect of cell concentration (5 to 150 g/L wet wt after broth dilution) on homogenizer disruption efficiency and homogenate viscosity is reported for E. coli. Broth dilution increases homogenizer efficiency and decreases feed and homogenate viscosity. However, this increase in disruption efficiency is not sufficient to warrant dilution of the broth prior to homogenization. The optimal feed concentration is the maximum possible that does not lead to practical handling difficulties due to high viscosity.  相似文献   
98.
The effect of various concentrations of acetaldehyde (0, 0.05, 0.1, 0.25, 0.5, 1.0, and 5.0 mM) on the relative rates of formation of hemoglobin acetaldehyde adducts detected in fractions eluted from cation exchange high-pressure liquid chromatography (HPLC) was investigated. When the hemoglobin and acetaldehyde mixtures were incubated at 37 degrees C for various time intervals up to 24 hr, increased amounts of HbA1c could be observed after 2 hr incubation with 1 mM or greater concentrations of acetaldehyde, or after 4 hr incubation with at least 0.5 mM acetaldehyde. An increase in the HbA1a + b fraction was not observed with 4 hr incubation time until the acetaldehyde level reached 1 mM. The HPLC method detected no difference in minor hemoglobins from alcoholic and normal subjects. Incubation of red blood cells at 37 degrees C for 1 hr with six consecutive pulses of 0.05 mM [14C]acetaldehyde showed no differences in the amounts of minor hemoglobins determined chromatographically at various pulse intervals. However, the measure of the 14C-label incorporation into hemoglobin showed that adducts eluting in the HbA1a+b fraction were formed at a faster rate than those eluting in the HbA1c or HbA0 fraction, respectively. The specific activities of the HbA1a+b fractions at 2, 4, and 6 pulses were 34, 128, and 949 cpm/mg hemoglobin; those of the HbA1c fraction were 15, 58, and 174 cpm/mg hemoglobin. This evidence of modification of hemoglobin by physiological levels of acetaldehyde from 14C-label incorporation suggests that an assay more sensitive than chromatographic separation of adducts might be clinically useful in detecting alcoholism or monitoring alcohol detoxification programs.  相似文献   
99.
Human genes for glutathione S-transferases   总被引:11,自引:2,他引:9  
The tissue distribution of different glutathione S-transferases (GST) is analysed by electrophoresis. The existence of GST"e" (erythrocyte), GST3, GST1, and GST2 is confirmed. GST"e" the fastest and most thermolabile of different GST analysed is observed only in erythrocyte cells. GST3 which migrates more slowly than GST"e" is present in all tissues and cells analysed, excepted for erythrocyte cells in which only GST"e" is observed. GST1 presents a polymorphism with four phenotypes, 1, 1/2, 2, and 0 controlled by three alleles 1, 2, and 0 (null). With the sample of 56 livers analysed the different frequencies obtained are 9%, 5%, 43%, 43% for the phenotypes 1, 1/2, 2, and 0 respectively and 0.074 (p), 0.279 (q), 0.647 (r) for the alleles, 1, 2, and 0 (null). GST2 presents variant patterns due probably, in the majority of cases, to post-synthetic modifications rather than allelic variation. Two new GST are described, GST4 and GST5. GST4 abundant in muscle tissue is a dimeric protein. GST4 forms with GST1 a heterodimeric band. GST5 is observed in brain homogenates. For the chromosome localization the results obtained by man (leucocytes)-mouse somatic cell hybrid analysis indicate that the gene for leucocytes GST is on chromosome 11. This gene is the structural GST3 gene.  相似文献   
100.
Summary We used a cloned human cDNA probe homologous to the placenta chorionic gonadotropin subunit (CGB) and to the pituitary luteinizing hormone subunit (LHB) and Southern blotting techniques to analyse DNA from a series of rodent x human somatic cell hybrids for the presence of specific gonadotropin subunit related sequences. Our results provide evidence for the assignment and linkage of the eight genes (or pseudogenes) coding for the subunit of these glycoprotein hormones to chromosome 19. Moreover, we observed a strict concordance between the permissivity of mouse x man hybrid cells to enteroviruses (which is linked to the presence of specific cell receptors encoded by human chromosome 19) and the presence of CGB and LHB related sequences, thus confirming the localization of the structural genes for the subunits on chromosome 19.This work was supported in part by INSERM grants CRL 81 1041 and by MRC grant MT 4860  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号